The effect of soil surface litter residue on energy and carbon fluxes in a deciduous forest
نویسندگان
چکیده
The Atmosphere–Land Exchange Surface Energy (ALEX) balance model is an analytical formulation of the energy and mass transport within the soil and the vegetation canopy used for simulating energy, evapotranspiration, and CO2 fluxes in a wide range of vegetation environments. The objective of this study was to evaluate the ability of ALEX to simulate the effect of soil-surface leaf litter residue on soil heat conduction (G), sensible heat (H), evapotranspiration (ET) (or latent heat (LE) when expressed as rate of energy loss) and CO2 fluxes in a deciduous forest. The model was evaluated in a deciduous forest in Oak Ridge, Tennessee where about 550 g m−2 of dry weight of slow decomposing leaf litter is produced annually during the fall season. Incorporating an explicit formulation of water and energy exchanges within the residue layer in ALEX improved the performance of the model against eddy covariance and G measurements. The discrepancies between model simulations made with and without leaf litter residue were largest during the spring and fall, when soil contributions dominated the energy budget of the forest. During these periods, particularly during the spring, without the inclusion of the residue layer the model overpredicted LE, G, soil temperature and soil moisture, and underpredicted H. The model showed no differences in simulating above-canopy net radiation (RN), with a slight difference in the above-canopy CO2 flux. The largest model improvement for residue effects was in the simulation of G, with the slope of the regression line between predicted and measured values reduced from 2.28 for the model without residue effects to 1.07 when the residue effect was considered. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
The Effect of Different Land Uses on New Indices of Soil Quality in Central Alborz Region
Different land uses have various effects on the changes of soil properties. The purpose of this study was to evaluate the effects of natural forest, needle-leaved plantation and rangelands of central Alborz on new indices of soil quality (i.e. organic matter stratification, carbon management index and soil biological activities). For this purpose, eight samples from organic layer (litter) and m...
متن کاملExperimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C-rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivit...
متن کاملTemperature influences carbon accumulation in moist tropical forests.
Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in matu...
متن کاملروند تولید 2CO و تغییر کربن بیومس میکروبی در خاکهای تیمار شده با کود اوره و مرغی
The addition of organic and inorganic substrates to calcareous soils low in organic matter and nitrogen contents may change soil microbial biomass and activity. In order to investigate the effect of chemical and organic fertilizers on soil CO2 production and microbial biomass C, a field experiment was conducted under maize cultivation. The experimental design was split-plot arranged in randomiz...
متن کاملForest defoliator pests alter carbon and nitrogen cycles
Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests (Quercus petraea L.) that were heavily infested by the leaf herbivores winter moth (Operophtera brumata L.) and mottled...
متن کامل